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ABSTRACT 

An efficient algorithm for large-scale joint inversion of gravity and magnetic data sets using Gramian 

coupling constraint is developed. The global objective function is formulated in the space of weighted 

parameters, but the Gramian constraint is implemented in the original unweighted space. This provides 

more similarity between reconstructed models. It is assumed that measured data are obtained on a 

uniform grid. Then, the sensitivity matrices exhibit a block Toeplitz Toeplitz block (BTTB) structure 

for each depth layer of the model domain, and both forward and transpose operations with the matrices 

can be implemented efficiently using two dimensional fast Fourier transforms (FFT). The regularized 

reweighted conjugate gradient (RRCG) algorithm, which relies only on matrix vector multiplication, is 

then used to minimize the objective function. Application of the RRCG algorithm in conjunction with 

the BTTB structure of the sensitivity matrices leads to a very fast methodology for large-scale joint 

inversion of gravity and magnetic data sets. Numerical simulations and real data application 

demonstrate the efficiency of the presented joint inversion algorithm.  
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INTRODUCTION 
Different geophysical data sets acquired in a given survey area provide information about different 

physical properties of the subsurface targets. The joint inversion of such multiple data sets can provide 

a more reliable model than a model which is produced by only one single data set. For the joint inversion 

algorithms, several coupling measures have been developed for the linkage between different model 

parameters (Lelièvre et al., 2012). Recently, the Gramian determinant constraint has been used 

extensively for the joint inversion of geophysical data sets (Zhdanov, 2015). The Gramian coupling 

does not require any a priori knowledge of specific relationship between model parameters. Indeed, 

with minimization of the Gramian constraint, during the inversion process, we enforce a linear 

relationship between different model parameters and/or their attributes. On the other hand, there are two 

major computational obstacles for the joint inversion of potential field data sets; the high storage 

requirements and the high computational costs. For a uniform grid of data points, the model sensitivity 

matrices have a BTTB structure for each depth layer of the model. Then, all forward and transpose 

matrix operations can be implemented using 2D FFT (Vogel, 2002). In this case, rather than storing the 

dense sensitivity matrices, it is sufficient to store a limited number of vectors. Furthermore, here, I use 

the regularized reweighted conjugate gradient (RRCG) algorithm, in conjunction with the BTTB 

structure of the sensitivity matrices, to minimize the global objective function. Within the framework 

of the RRCG algorithm matrix inversions are avoided. This makes it feasible to solve for large scale 

problems with respect to both computational costs and memory demands. To generate compact and 

sparse solution, here, I use L1-norm of model parameter as stabilizer. The presented algorithm is tested 

on synthetic model and applied for a real data case obtained over an area in northwest of 

Mesoproterozoic St. Francois Terrane, southeast of Missouri, USA. 
 

METHODOLOGY  
The subsurface is divided into a set of rectangular prisms, in which the prisms are kept fixed during the 

inversion, and unknown values of the physical properties of the prisms, density and magnetic 

susceptibility, are the model parameters which should be estimated. Here, we assume that data points 

are obtained on a uniform grid. Further, we suppose that there is no remanent magnetization. The 

forward operators are given by 
( ) ( ) ( )
obs A , 1,2.
i i i i= =d m                                                                                                          (1)     
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where the vectors ( )
obs
i md  are the observed gravity and magnetic data. Here I use i=1 for gravity and 

i=2 for magnetic, respectively. The matrices ( )A i m n  are the known sensitivity matrices which have 

BTTB structure for each depth layer. The goal is to find geologically acceptable models ( )i nm  that 

predict observed data at noise levels via a simultaneous joint inversion. The global objective function 

which should be minimized is given by (Vatankhah et al., 2022) 
2 2

2 2
( ) ( )( , ) (1) (2) ( ) ( ) ( ) ( ) ( ) ( ) (1) (2)

aprd obs
22

1 1

P ( , ) = W (A ) W ) ( , ).
i ii i i i i i

G

i i

S   

= =

− − + m m m d + (m m m m                  (2)     

Where the weighting matrix on model parameters and Gramian constraint are given by 

1 1

(1) (1) (1) (2)1
( ) ( ) ( ) ( )( ) ( ) ( ) 2 2 (1) (2)4

aprdepth hard L L (2) (1) (2) (2)

( , ) ( , )
W = W W W W diag 1 (( ) ) ( , ) =

( , ) ( , )

i i i ii i i
GS

 
= − + 

 

m m m m
, m m , m m

m m m m

The minimization of eq. (2), then, enforces a linear correlation between model parameters, (1) (2)= m m  

(  is a scalar), and no a priori knowledge is required. 

The objective function given in eq. (2) can be reformulated using a space of weighted parameters as 
2 2

2 2
( )( , ) (1) (2) ( ) ( ) ( ) ( ) ( ) (1) (2)

aprobs
22

1 1

P ( , ) = A ( , ).
ii i i i i

G

i i

S   

= =

− − + m m m d + m m m m                                   (3)     

Where        ( ) ( ) ( ) ( )( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )
apr aprd obs d obsA = W A (W ) , = W , = W , = W .

i i i ii i i i i i i i i− d d m m m m  

Here data misfit and stabilizer terms are given in the space of weighted model parameter, but the 

Gramian constraint is given in the original space. This strategy provides a more robust approach for 

selection of the regularization and weighting parameters, while, simultaneously, provides the 

correlation between the original model parameters and not their weighted forms (see Vatankhah et al. 

(2022) for more details). 

For the minimization of (3), the regularized re-weighted conjugate gradient algorithm is used   

obs

2 2
(1) (2) (1) (1) (2) (2) (2) (1) (2) (1) (2) (1)

2 2

T
1

2

2
1 0 02

1 2

2
2 2

2 2
2

= A ,

( ) ( , ) , ( ) ( , ) ,

A ( ) ( ) ,

p p , p ,

(p , ) A p p p ,

k k k

k kG Gk k k k k k k k k k

k k k k k k G k

k

k k k

k

k k k k k k k k

k

l l

l l

l
l l

l

s l

 

 

−

−

−

−

= − − = − −

= + − +

= + =

 
= + + 

 

r m d

m m m m m m m m m m

r m m

m 1

( ) ( ) ( )1
1 1

p ,

(W ) .

k k k

i i i
k k k

s+

−
+ +

= −

=

m

m m

                 (3)     

Further, at each iteration of RRCG algorithm, lower and upper bounds are also imposed on obtained 

model parameters. From the steps of the RRCG algorithm it is clear that only forward and transpose 

matrix-vector multiplications are required (there is no need to matrix inversion). All such operations 

can proceed by using the BTTB structure of the sensitivity matrices and 2D FFT, as described in detail 

in Hogue et al. (2020) and Vatankhah et al. (2022), and I do not repeat here. Hence, the RRCG algorithm 

provides a very fast methodology for minimizing the global objective function (3), which also requires 

minimal memory storage. Then, large-scale joint inversion problems can be implemented very fast. In 

the presented algorithm, all weighting parameters ( )i  and ( )i  have to be chosen carefully. I use a 

simple but effective strategy to determine these parameters. At first iteration, large values for ( )i  are 

selected. At next iterations, these parameters are reduced slowly. For the parameters ( )i , I use fixed 

values during iterations. 

 

SYNTHETIC MODEL  
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The algorithm is tested on a large-scale complicated model that consists of five bodies with different 

shapes, sizes, and depths. A 3D iso-surface of the model is illustrated in Figure 1(a).  Further, three 

depth section of the density distribution of the model are shown in Figure 2. The gravity and magnetic 

data sets are generated on the surface over the 150 ×100 uniform grid with 100 m grid spacing. The 

noise-contaminated data sets are illustrated in Figures 1(b) and 1(c). To perform the inversion, the 

subsurface is divided into 150×100×10=150000 prisms of size 100 m in each dimension. The 

computation is performed on a standard laptop computer with Intel(R) Core(TM) i7-10750H CPU 2:6 

GHz processor and 16 GB RAM. After 96 iterations, and about 4872 s, the convergence criteria are 

satisfied and inversion terminates. Figures 3 and 4 are illustrated three depth sections of the 

reconstructed density and magnetic susceptibility models. The models are sparse, geophysically 

acceptable, similar, and consistent with true models.    

 

      
Figure 1. (a) Synthetic model consisting of five different bodies. (b)  and (c) are the noise-contaminated gravity and 

magnetic data produced by the model. 
 

 
Figure 2. Three depth sections of the original density distribution for the model shown in Figure 1(a). At depth (a) 

200m, (b) 300 m, and (c) 400. 
 

 
Figure 3. Three depth sections of the reconstructed density model.  At depth (a) 200m, (b) 300 m, and (c) 400. 

 

 
Figure 4. Three depth sections of the reconstructed magnetic susceptibility model.  At depth (a) 200m, (b) 300 m, 

and (c) 400. 
 

REAL DATA  
The joint inversion algorithm is applied on gravity and magnetic data obtained over the northwestern 

portion of the Mesoproterozoic St. Francois Terrane in the southeast Missouri, USA. Major targets in 

the survey area are the magnetic, magnetic breccia and hematite ore bodies. These igneous rocks are 

covered by 1-2 km of Paleozoic limestones and sandstones. Figure 5 illustrates the residual gravity and 

magnetic data over the survey area. Here, there are 21608 gridded data points. The Pea Ridge (PR) 

magnetic deposit, Figure 5, is the only deposit that also contains significant rare earth elements (REE). 
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To perform the inversion, the subsurface was divided into 146×148×20=432160 prisms. The inversion 

algorithm terminates after 186 iterations with a run time of approximately 20 hours. Three cross-

sections of the reconstructed density and magnetic susceptibility models over the major targets are 

illustrated in Figures 6 and 7. 

 

 
Figure 5. (a) Residual gravity, and (b) residual magnetic anomalies over the survey area. The locations of major Fe 

oxide deposits including Bourbon (B) and Pea Ridge (PR) are shown. 

 
Figure 6. Cross-sections of the reconstructed density model.  The sections are at (a) 16 km Northing (over PR), (b) 18 

km Northing, and (c) 24 km Northing. 

 
Figure 7. Cross-sections of the reconstructed magnetic susceptibility model.  The sections are at (a) 16 km Northing 

(over PR), (b) 18 km Northing, and (c) 24 km Northing. 
 

CONCLUSION(S) 
An algorithm for large-scale focusing joint inversion of gravity and magnetic data using Gramian 

coupling constraint has been presented. The objective function is formulated in the space of weighted 

parameters, but the Gramian constraint is implemented in the original space. This provides more 

similarity between the reconstructed models. To solve large-scale problems, the BTTB structure of the 

sensitivity matrices and 2D FFT in conjunction with RRCG algorithm was used. Then, the presented 

algorithm is efficient for both memory storage and computational cost. The algorithm was tested on a 

large complicated synthetic model, and then applied on real data set obtained over an area in the 

southeast Missouri, USA. 
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