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ABSTRACT 
One of the electromagnetic induction (EMI) schemes for submarine hydrocarbon reservoir exploration 
is the control source electromagnetic (CSEM) method. Despite the fact that the marine CSEM method 
has less accuracy compared to the seismic reflection measurements, it has reduced the cost of modeling 
and has a relatively high coverage speed. In this research, for 3D and 4D forward modeling of a 
hydrocarbon reservoir with a regular geometrical shape, the Fredholm integral equation (IE) of second 
order is used. Whereas for solving full integral equations high performance computers are needed and 
these computational costs are not affordable, approximations are usually used to solve the 
electromagnetic problems. The scope of this study is to utilize several approximation methods to solve 
the integral equation for 4D forward modeling of a regular geometrical shape reservoir using CSEM 
synthetic data. These approximation methods consist of T-matrix approximation (TMA), Extended 
Born approximation (EBA), and Born approximation (BA). To numerically verify the performance of 
the proposed approximations, the inverse modeling of the proposed methods is implemented and then 
tested in MATLAB. Our results show that the T-Matrix approximation has better accuracy and a wider 
electrical conductivity application range. 

Keywords: MCSEM, Integral equations, Born approximation, Extended Born approximation, T-

Matrix approximation 

INTRODUCTION 
Electromagnetic fields are used in geophysics because of their interactive nature with the medium in 
which they propagate. This interaction can be utilized to detect certain physical properties of rocks, 
such as electrical conductivity, dielectric permittivity, and magnetic permeability (Zhdanov 2009). EM 
methods are based on the study of the propagation of electric currents into the Earth. In hydrocarbon-
bearing rocks, resistivity increases profoundly, resulting in a resistivity contrast between the scatterer 
and the background media. CSEM modeling has become a significant complementary tool for offshore 
petroleum exploration before drilling. Marine CSEM survey has been used in both 3D modeling and 
time-lapse water injection into the reservoir. This technique mostly has practical usage in discriminating 
between the hydrocarbon and the water-filled rocks in addition to estimating the geometry of the 
hydrocarbon reservoir (Constable 2010). 

GREEN’S FUNCTION 
Green’s function is an integral kernel that is applied to boundary conditions to solve linear differential 
equations. The macroscopic dielectric EM field is governed by the Helmholtz equation (Chew 1999). 
For a homogeneous background, the green’s function form is, 
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magnetic permeability,   is conductivity, and   is  angular frequency. Due to the singularity, it is 

important to rewrite green’s function when r r→  (singularity points) before the EBA and the TMA 

are formulated. The second term in equation (1) goes up to zero faster than the first term (Chew, 1999). 
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In order to derive the integral equation, green’s function technique is usually used. It is assumed that 
conductivity and electric field are constant  in a given cell, and the discretization of the integral equation 
provides a linear system of equations.  In the structure of the IE methods, the conductivity distribution 
consists of two parts; 1) the background conductivity, b , for the calculation of green’s function, and 

2) the anomalous conductivity,  , within the domain of integration (Black and Zhdanov, 2010). In this 

research, the second order of the Fredholm integral equation is used for the electric field calculation, 
which is written as follows, 
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Where ( )b

iE r  is the background field that can be calculated for a known source ( )b

iJ r , and the second 

integral term represents the scattered field. According to Equation (4) the total field is appeared that is 
the sum of the background field and the scattered field (Habashy et al, 1993). 

BORN APPROXIMATION 
The Born approximation has wide applicability in solving inverse and forward scattering problems in 
seismic and electrodynamics methods. BA is developed to avoid solving the super-large system of linear 
equations for full integral equation algorithms. It works very well only for small conductivity contrasts 
and low frequencies. This approach considers that the total electric field in the integral terms is 
approximately equal to the background field, meaning it neglects multiple scattering within the 
scattered. In other words, the anomalous electric field inside the anomalous domain is zero (Abubakar 
and Habashy, 2005). Its formulation follows as, 
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EXTENDED BORN APPROXIMATION 
Habashy et al (1993) presented the Extended-Born technique to improve the Born- approximation. This 
strategy replaces the total field in the integral equation not by the background field, like in the BA, but 
considers its projection onto a depolarization tensor, ( )r . Therefore, it is significant to determine the 

depolarization tensor to allow the replacement of the integral equations for the interior fields by integral 
representations of these fields. The EBA is based on; 1) considering a homogeneous and isotropic 
medium permitting the propagation of electromagnetic waves, and 2) recognizing that for interior 
points, r V , a dominant contribution to the integral in Equation (4) results from scattering points that 

are in the neighborhood of the observation point, r r= , since the green’s tensor, ( , )bG r r  gives a 

singularity at that point (Abubakar and Habashy, 2005). Considering Equation (4) the EBA formulation 
is rewritten as, 
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Where ( )r  is the depolarization tensor and ( )r   is a tensor that can be written as Equations (7) and 
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T-MATRIX APPROXIMATION 
The integral equation is approximated by using the T-matrix approach. The computation of the T-matrix 
is completely independent of the source-receiver configurations, but only needs knowledge about the 
scattering potential and green’s function for the background field. Unlike the BA, the contrasts need not 
be small. To solve the integral equations, TMA includes all effects of multiple scattering (Jakobsen, 
2012). This approximation can be written as Equation (9), 
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The lateral extent of injected fluid is modeled to monitor small changes in electrical conductivity 

among increasing pressure inside the reservoir for extraction, while the conductivity of the injected 

fluid and hydrocarbon remained fixed. This method can detect the changes in contrast of reservoir 

due to fluid injection in terms of time. 
INVERSE THEORY 
A regularized least squares method estimates the solution of the inverse problem by finding the model 

parameters that minimize a particular measure of the length of the estimated data, (Menke 1989). The 

least squares method uses the L2 -norm to quantify the length and can be easily extended to the general 

linear inverse problems. Tikhonov regularization methods is used to solve discrete 

ill-posed problems such as Fredholm IEs (Hansen 2010). Least square formulation is as follow, 
𝒎𝛼 = (𝑮𝑇𝑮 + 𝛼2𝑰)−1𝑮𝑇𝒅 

 

(10) 
Where 𝒎𝛼 indicates the reservoir conductivity distribution, α is the Tikhonov stabilizer, I is the identity 
matrix, and 𝒅 is observed data. Note that the application of the proposed approximation methods leads 
to a linear inverse problem. 

NUMERICAL RESULTS 
To verify the validity of these approximation methods a reservoir with a simple geometrical shape was 
modeled. Information about receivers, source, and reservoir parameters are summarized in table 1. 

Table1. receivers, source, and reservoir parameters.  

Source and Receivers Reservoir 

Receivers number: 31 at x and 13 at y direction Thickness (m): 50 

Receiver separation (m): 218.5 at x and 538.5 at y direction Depth (m): 650 

Dipole length (m): 100 Background conductivity (S/m): 0.5 

Source strength (A): 1000 Reservoir conductivity (S/m): 0.001 

Frequency (Hz): 1 Number of grid cells: 56*56*1 

Depth (m): 0 Grid volume
3( )m : 25*25*50 

Background dimension
2( )m : 7000*7000 Reservoir dimension

3( )m : 1400*1400*50 

Figures 1 show forward modeling of the electric field response of simple reservoir by BA, EBA, and 

TMA, respectively. Referring to Figure 1, the maximum magnitude of the electric field appears at a 

receiver that is positioned exactly above the reservoir, and as the offset increases, the electric field 

response becomes weaker. Furthermore, the inversion results of the simulated data using the BA, EBA, 

and TMA methods are illustrated in figure 2. According to the inverted models, it is evident that the 

TMA result represents the true model better than BA and EBA. 
a) 

 

b) 

 

c) 

 
Figure 1. Electric field response recorded by 13 receivers at y direction by, a) BA, b) EBA and, c) TMA 

a) 

 

(b 

 
c) 

 

d) 
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Figure 2. electrical conductivity inverse modeling by a) True model, b) BA (3.85%), c) EBA (3.70%), d) TMA (1.78e-

4%). 

 

Figure 3 shows the electric field response of a 750*750*50 m3 reservoir after water injection to increase 

pressure in the reservoir by BA, EBA, and TMA, respectively. The electric field magnitude decreases 

as the water head goes further. The electrical conductivity inverse modelings for three approximations 

are shown in figure 4. Although there is not a considerable difference between BA and EBA, TMA has 

an acceptable resolution and relative error with 11.6%. 
a) 

 

b) 

 

c) 

 
Figure 3. Electric field response recorded by 13 receivers at y direction after 5 years water injection by, a) BA, b) 

EBA and, c) TMA 
a) 

 

(b 

 
c) 

 

d) 

 
Figure 4. Electrical conductivity inverse modeling after 5 years water injection by, a) BA (re-err: 17.72%), b) EBA 

(re-err: 16.28%) and, c) TMA (re-err: 11.6%) 

CONCLUSION(S) 
In this paper, three different approximations (e.g., BA, EBA, and TMA) were applied to the integral 
equations for MCSEM synthetic data. Considering the numerical experiments, it was demonstrated that 
the TMA has higher accuracy and a wider range of electrical conductivity application. The TMA 
roughly estimated the full integral equation solution for EM field, while the EBA is expected to improve 
the EM field over large conductivity contrasts between the reservoir and background of the assumed 
model in comparison with the BA. The TMA is valid for high contrasts; therefore, it can be used as a 
calibrator for BA and EBA. To improve the accuracy, the number of grid cells needs to be increased by 
considering the computational costs. 
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